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Why No Analytic Continuation Connects Real-Time
and Imaginary-Time Thermal Propagators

Jian Zuo1 and Yuan-Xing Gui2
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We discuss the analytic continuation in thermal field theory. Taking advantage
of the geometry of h ± j spacetime, we explain why direct analytic continuation
does not exist between the imaginary-time and real-time thermal propagators.

Finite-temperature field theory (FTFT) has two formalisms: the

imaginary-time formalism and the real-time formalism (Landsman and van

Weert, 1987). The imaginary-time formalism is characterized by the periodic-

ity of imaginary time, which leads to discrete imaginary energy in the imagi-

nary-time thermal Green functions (Matsubara, 1955; Fetter and Walecka,

1965), and the real-time formalism is charactered by the doubling of the
degrees of freedom, which causes the real-time thermal Green functions to

have 2 3 2 matrix structures (Niemi and Semenoff, 1984; Umezawa et al.,
1982). This paper discusses a problem concerning the connection of the two

formalisms, i.e., the analytic continuation of thermal propagators. Although

it has long been realized that direct analytic continuation cannot give the 2
3 2 matrix real-time thermal propagators from the imaginary-time thermal

propagators, the reason is still not very clear. It is interesting to find that an

explanation can be provided by the geometrical features of a spacetime with

S 1 topology, i.e., h ±j spacetime (Gui, 1988, 1990, 1992, 1993).

The theory of h ±j spacetime is constructed in order to provide a unique

geometrical background for FTFT. The most important parts of h ±j spacetime
are its Euclidean section and Lorentzian section. The Euclidean section has
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an S 1 topology, which makes quantum fields satisfy the periodicity for imagi-

nary time, and the Euclidean propagators in the h ±j spacetime correspond

to the imaginary-time thermal propagators. An interesting fact about the
Lorentzian section is that its geometrical structure is very similar to those of

the Rindler spacetime and black hole. The infinities of the Minkowskian

spacetime become ª horizonsº on the Lorentzian section which lead to the

doubling of degrees of freedom of the fields, and the vacuum propagator in

the h ±j spacetime is equal to the 2 3 2 matrix real-time thermal propagator

in the Minkowskian spacetime. It was suggested (Gui, 1993; Zuo and Gui,
1995) that the field theories on the Euclidean section and Lorentzian section

correspond to the imaginary-time formalism and real-time formalism of FTFT,

respectively. The special geometrical structures of the h ±j spacetime also

affect the relation between the two formalisms of FTFT.

This paper first gives a brief description of the structures of the h ±j
spacetime and some relations to be used. Then by discussing the procedures
of solving the equations for propagators on the Euclidean section and on the

Lorentzian section, respectively, we explain how the geometry influences the

feasibility of analytic continuation.

The four-dimensional h ±j spacetime can be regarded as the maximal

analytic complex extension of the S 1 3 R 3 manifold (Gui, 1990). It has the
following complex metric:

ds2 5
1

a 2( j 2 2 h 2)
( 2 d h 2 1 d j 2) 1 dy2 1 dz2 (1)

where a 5 2 p / b is a real constant and h , j , y, z are complex variables. If

we limit j , y, z to be real and h to be a pure imaginary variable i s , the

Euclidean section of h ± j spacetime is obtained:

ds2 5 a 2 2( j 2 1 s 2) 2 1 (d s 2 1 d j 2) 1 dy2 1 dz2 (2)

which under the transformation

s 5 a 2 1e a x sin a t

j 5 a 2 1e a x cos a t (3)

becomes a flat Euclidean spacetime

ds2 5 d t 2 1 dx2 1 dy2 1 dz2 (4)

The metric (2) is singular at s 5 j 5 0, so it describes a Euclidean spacetime
with S 1 3 R 3 topology. The periodicity of polar angle a t naturally supplies

the periodicity of imaginary time in FTFT. Now let all of h , j , y, z be real,

one gets the Lorentzian section of h ± j spacetime. The singularities on the

Lorentzian section are described by
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j 2 2 h 2 5 0 (5)

which divides the Lorentzian section into four disjointed regions I, II, III,

IV. This structure resembles that of the Schwarzschild spacetime; thus the

singularities (5) are also called ª horizons.º Each of the regions is identified

with a four-dimensional Minkowskian spacetime. One can see this from
the transformation

h 5 a 2 1e a x sinh a t, j 5 a 2 1e a x cosh a t (6)

which transforms region I of the Lorentzian section into

ds2 5 2 dt2 1 dx2 1 dy2 1 dz2 (7)

Similarly, regions II, III, and IV are transformed by

h 5 2 a 2 1e a x sinh a t , j 5 2 a 2 1e a x cosh a t

h 5 a 2 1e a x cosh a t , j 5 a 2 1e a x sinh a t

h 5 2 a 2 1e a x cosh a t, j 5 2 a 2 1e a x sinh a t (8)

respectively. The appearence of singularities (5) and the existence of several

regions make it possible for the Lorentzian section to explain the doubling

of degrees of freedom. While the original degrees of freedom are provided

by region I, the additional degrees of freedom can be supplied by region II.

There is a relation between the transformations of regions I and II:

h 5 2 a 2 1e a x sinh a t 5 a 2 1e a x sinh a (t 2 i b /2)

j 5 2 a 2 1e a x cosh a t 5 a 2 1e a x cosh a (t 2 i b /2) (9)

Using Minkowskian coordinates (t, x, y, z), we find that the relation (9)
becomes the relation between a point a1(t1, x1, y1, z1) in region I and its

reflected point a2(t2, x2, y2, z2) in region II:

t2 5 t1 2 i b /2, x2 5 x1, y2 5 y1, z2 5 z1 (10)

i.e., their Minkowskian coordinates differ only in an imaginary-time interval

i b /2.

Another important relation is that the direction of time t in region II is

opposite to the time direction in region I. The timelike Killing fields on the

Lorentzian section are defined by (Gui, 1990):

1 -
- l 2

a

5 e a ( j h a 1 h j a) (11)
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where e 5 1 and 2 1 for regions I and II, respectively. It is natural to

choose the Killing parameter l as the time coordinate, which coincide with

Minkowskian time coordinate t in region I and 2 t in region II.
Using the above relations, one can see how the geometry of h ± j space-

time affects the problem of analytic continuation. The following discussion

takes the example of the massless free scalar field in two-dimensional h ±j
spacetime. Simple as it is, it brings one directly into contact with the physical

and geometrical essence and avoids difficult technical details. The equation

for propagators of this field on the Euclidean section is

1 - 2

- s 2 1
- 2

- j 2 2 DI(A 2 A8) 5 2 ( 2 gE) 2 1/2 d (A 2 A8) (12)

where gE stands for the determinant of metric of the Euclidean section and
DI is the imaginary-time propagator. Under transformation (3), the equa-

tion becomes

1 - 2

- t 2 1
- 2

- x 2 2 DI (A 2 A8) 5 2 d (A 2 A8) (13)

in which the points A and A8 have the coordinates ( t , x) and ( t 8, x8), respec-

tively. Since the Euclidean section has S 1 topology, the propagators naturally

satisfy the periodicity boundary condition:

DI( t 2 t 8) 5 DI( t 2 t 8 1 b ) (14)

which is just the KMS condition (Kubo, 1957; Martin and Schwinger, 1959).

Using this condition, we obtain the imaginary-time thermal propagator in

momentum space (Fetter and Walecka, 1965):

DI( v n ,k) 5
1

v 2
n 1 k 2 (15)

where v n 5 2 p n /( 2 i b ).

Now consider the equation on the Lorentzian section:

F 2
- 2

- h 2 1
- 2

- j 2 G DR(A 2 A8) 5 2 ( 2 gL) 2 1/2 d (A 2 A8) (16)

where gL stands for the determinant of metric of the Lorentzian section. Note
that, since the regions III and IV are spacelike with respect to regions I and

II, one only needs to consider the cases that A and A8 are located in regions

I and II. Using the Minkowskian coordinates (t, x), we can transform equation

(16) into
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F 2
- 2

- t 2 1
- 2

- x 2 G DR(A 2 A8) 5 2 d (A 2 A8) (17)

Since both A and A8 can be located in each of the two regions, there are four

cases. If one performs a Fourier transformation of equation (17), there are

four expressions for the field modes. Using the subscripts 1, 2 to stand for
coordinates in regions I and II, respectively, one can write the expressions

for the field modes as

e11 5 exp{ik(x1 2 x 81) 2 ik0(t1 2 t 81)},

e12 5 exp{ik(x1 2 x 82) 2 ik0(t1 2 t 82)}

e21 5 exp{ik(x2 2 x 81) 2 ik0(t2 2 t 81)}, (18)

e22 5 exp{ik(x2 2 x 82) 2 ik0(t2 2 t 82)}

note that e12 and e21 are only formally like plane waves. But we can view

the coordinates t and x in these two expressions as functions of the coordinates

h and j ; thus e12 and e21 represent the field modes on the whole Lorentzian

section which relate different regions.
The Fourier coefficients D(k, k0) are different for different field modes.

Hence the transformed equation takes the form of a matrix:

# dk dk0 (k 2 2 k 2
0) 1 D11e11 D12e12

D21e21 D22e22 2 5 2 # dk dk0 1 e11 e12

e21 e22 2 (19)

By the use of coordinate relations

t2 5 t1 2 i b /2, x2 5 x1 (20)

one rewrites the matrix on the right side of (20) as

1 e ik(x1 2 x8
1) 2 ik0(t1 2 t81) e ik(x1 2 x8

1) 2 ik0(t1 2 t81 1 i b /2)

e ik(x1 2 x8
1) 2 ik0(t1 2 t81 2 i b /2) e ik(x1 2 x8

1) 1 ik0(t1 2 t81) 2 (21)

A sign is changed in the 2±2 component because the direction of time in

region I points opposite the one in region II.

The term i b /2 in the off-diagonal components is explained as a thermal

factor caused by the geometrical structure of the Lorentzian section. Since

regions I and II are separated on the Lorentzian section by the ª horizons,º

they can only be connected by complex paths which run along half-circles
on the Euclidean section and result in the imaginary-time interval i b /2.

Physically, the observors in region I cannot measure the information in region

II, which is screened by the ª horizons.º It is just this loss of information that

makes the observers in region I find a finite temperature. In this explanation,
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the multiple-region geometrical structure, and thus the doubling of degrees

of freedom, are the origins of the thermal factor. This geometry-induced

thermal effect is quite similar to the gravity-induced Hawking ±Unruh effects
(Hawking, 1974; Unruh, 1975).

Using similar coordinate relations on the left side of (19), one gets

four equations:

1 2 - 2

- t 2 1
- 2

- x 2 2 D11(t 2 t8,x 2 x8) 5 2 d (t 2 t8, x 2 x8)

1 2 - 2

- t 2 1
- 2

- x 2 2 D12(t 2 t8 1 i b /2, x 2 x8) 5 2 d (t 2 t8 1 i b /2, x 2 x8)

1 2 - 2

- t 2 1
- 2

- x 2 2 D21(t 2 t8 2 i b /2, x 2 x8) 5 2 d (t 2 t8 2 i b /2, x 2 x8)

1 2 - 2

- t 2 1
- 2

- x 2 2 D22(t8 2 t, x 2 x8) 5 2 d (t8 2 t, x 2 x8) (22)

Here the subscripts 1 for coordinates are omitted. By solving these equations,

one gets

D b (k0, k) 5 1 D11 D12

D21 D22 2 (23)

where

D11 5
1

k 2
0 2 k 2 1 i e

2
2 p i d (k 2

0 2 k 2)

e b k0 2 1
(24)

D12 5
2 p ie 2 b k0/2 d (k 2

0 2 k 2)

1 2 e 2 b k0
(25)

and

D21 5 D12, D22 5 2 D *11 (26)

Thus the solution of equation (16) is just the 2 3 2 matrix real-time ther-

mal propagator.

According to the above derivations, one can see that direct analytic

continuation between the imaginary-time and real-time thermal propagators
is hindered by the different singularities on the two sections, which impose

different requirements in the courses of solving these equations. On one hand,

the singularity s 5 j 5 0 results in the S 1 topology of the Euclidean

section and thus the periodicity boundary condition (14), which requires the
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propagators on this section to be transformed into Fourier series. On the

other hand, the Lorentzian section is divided into disjointed regions by the

ª horizonsº (5), which cause different expressions of field modes and thus
give four matrix components of the thermal propagator.

Dolan and Jackiw (1974) tried to get the real-time thermal propagators

through direct analytic continuation of the imaginary-time thermal propaga-

tors. However, the result was only the 1±1 component of the 2 3 2 real-

time thermal propagator, which leads to difficulties in calculations.

In view of the analysis in this paper, it is also clear why the early
continuation was not complete. In fact, there was an implicit premise for that

attempt. It was supposed that the background spacetime for the real-time

formalism is the Minkowskian spacetime. This corresponds to only a region

of the Lorentzian section of h ±j spacetime, hence it cannot provide the

doubling of degrees of freedom. The 1±1 component of the propagator is

just the case that both A and A8 are located in region I, while the other cases
are ignored in that attempt. Since the singularities on the Lorentzian section,

which play an important role in solving the equation for the real-time propaga-

tor, had not been considered, it is not strange that the 2 3 2 matrix real-time

thermal propagator could not be obtained.

This paper took as an example a very simple model, and its extension
to more practical calculations is far from straightforward. However, by dis-

cussing the influence of spacetime geometry on the feasibility of analytic

continuation, it suggests a new intuitive way of looking at this problem.
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